
IBM WebSphere MQ (MQ Series) in a Nutshell

(Prepared by Channu Kambalyal)

Introduction
• MQ Series is a Middleware for Commercial Messaging and Queuing
• MQ Series API – also called Message Queue Interface (MQI) used to communicate with

a Message Queue Manager (MQM), the runtime program of MQSeries.
• MQI consists of 13 calls.

Messages

• Consists of 2 parts: Message Descriptor and Message Data
• Message descriptor identifies message id and contains control information such as

message type, expiry time, correlation ID, priority, reply queue name.
• MQ Series Version 5 supports maximum message length of 100 MB
• Messages can be segmented or grouped. If permitted queue manager segments a large

message when it does not fit in a queue. Application has the option to receive entire
message in piece or each segment separately. Application can also control the logical
boundaries or buffer size of the segment of a message. Queue Manager ensures that the
order of the segment is maintained.

• Several small messages can be grouped to build one larger physical message.
• Using a Distribution List, you can send a message to more than one destination.

Distribution List is a file contains a list of queue names and queue managers that own
them. Receiving Queue Manager replicates the messages and puts them into destination
queues (This function is called late fan-out).

• MQ Series knows 4 types of massages: Datagram (unsolicited message), Request (a
message for which response is expected), Reply and Report (an event such as
occurrence of an error or confirmation on arrival or delivery)

• MQ Series messages can be persistent and non-persistent.
• Message Descriptor contains: Version, Message ID/Correlation ID, Persistent/ Non-

Persistent, Priority, Date &m Time, Lifetime of a message, Return Address, Format,
Sender Application and Type, Report options/ Feedback (COA, COD), Back out counter,
Segmenting/ Grouping Information.

Queue Manager (MQM)

• Manages queues and messages for applications
• Transfers messages to other Queue Managers via channels using existing network

facilities.
• It refers to objects that are defined by the administrator.
• Coordinates updates to databases and queues using two-phase commit.
• Gets and puts from/to queues are committed together with SQL updates, or backed out if

necessary.
• Segments messages, if necessary, and assembles them.
• Can group messages and send them as one physical message to their destination,

where they are automatically disassembled.
• Can send one message to more than one destination using a user-defined dynamic

destination list.
• Allow administrators to create and delete queues, alter properties of existing queues,

control the operation of queue manager.
• MQ Series for Windows NT version 5.1 provides GUI to administer.
• MQ Series for Windows (different from NT) is a single-user queue manager and is not

intended to function as a queue manager for other MQ Series clients.

Page 1 of 4

Queue Manager Clusters
• MQSeries for MVS/ESA and Version 5.1 for distributed platforms, provides clustering

features
• Queue Managers that form a cluster can run in the same machine or in different

machines on different platforms.
• Two of Queue Managers maintain a repository that contains information about all queue

managers and queues in the cluster (full repository). Other Queue Managers maintain
only a repository of the objects they are interested in (partial repository).

• Queue Managers use special cluster channels to exchange information.
• Client application may specify a queue manager and direct the message to a specific

queue in a cluster or it may let a queue manager to determine where the queue is and to
which one to send the message.

• Client uses a Transmission Queue on its machine and destination queue is called “Target
Queue”.

• Administrator must define the name of the cluster, when a queue is defined.
• MQSeries distributes the messages round robin.

Queue Manager Objects

• A Queue Manager uses 3 types of objects, namely, Queues, Process Definitions and
Channels.

• Queues are used to store messages.
• Process Definition object defines an application to a queue manager. It contains a name

of a program (and its path) to be triggered when a message arrives for it.
• Channel is a communication link. There are 2 kinds of channels, namely, Message

Channels and MQI channels.
• Message Channel connects 2 queue managers via Message Channel Agents (MCA).

Message Channel is unidirectional.
• MCA is a program (also called mover) that transfers messages from a transmission

queue to a communication link and from communication link to a target queue.
• MQI channel connects MQSeries client to a queue manager and is bi-directional.
• Message Channel can run at 2 speeds: fast and normal. Fast Channels improve

performance but messages can be lost in case of channel failure.

Message Queues

• Message Queues belong to Queue Manager.
• Types of Messages Queues are:

o Local Queue – is a real queue!
o Cluster Queue – is a local queue that is known throughout a cluster of queue

managers.
o Remote Queue – structure describing a queue hosted by a different queue

manager.
o Transmission Queue – a local queue used for messages to be sent to a remote

queue.
o Initiation Queue – local queue with a special purpose
o Dynamic Queue – local queue created on the fly
o Alias Queue - - if you do not like the queue name
o Dead-Letter Queue – one for each queue manager
o Reply-to Queue – specified in request message
o Model Queue – model for local queues
o Repository Queue – hold cluster information

• Create a queue manager using the command: crtmqm. Example:
o Crtmqm /q /u system.dead.letter.queue MYQMGR

• To start a queue manager issue command: strmqm

Page 2 of 4

Manipulating Queue manager Objects

• Use the utility RUNMQSC to manipulate queue manager objects. Ensure queue manager
is started prior using the runmqsc utility. Example:

 C:\strmqm
 runmqsc

 define qlocal(‘QUEUE1’) replace descry (‘test queue’)
 alter qmgr deadq(system.dead.letter.queue)
 end

How MQSeries Works

Following diagram depicts how MQSeries works:

Figure: How MQSeries Works

Program 1

Remote Q

MQPUT

Channel Initiator
(Must be running)

Ch Init Q

Xmit Q

MQSeries Channel
Agent
(MCA)

Starts

Network

Moves

Monitors

MQM A

Listener
(Must be running)
(Default port 1414)

MQSeries Channel
Agent
(MCA)

Starts

Local Q

Moves

MQM B
Program 2

MQGET

Trigger Monitor
(Must be running)

Starts

System
Init Q

Monitors

MQM A - Detect message destined for
remote Q moves it to xmit Q and a Ch init Q

MCA - Moves messages to a local Q and to
System Init Q

Communication between Queue managers

How to Trigger Applications

Message Queuing Interface

MQCONN Connect to a Queue Manager
MQDISC Disconnect from a Queue Manager
MQOPEN Open a specific queue
MQCLOSE Close a queue
MQPUT Put message on a queue
MQPUT1 Get message from a queue
MQGET MQOPEN + MQPUT + MQCLOSE
MQINQ Inquire properties of an object

Page 3 of 4

MQSET Set properties of an object
MQCONNX Standard or fast path bindings
MQBEGIN Begin a unit of work (database coordination)
MQCMIT Commit a unit of work
MQBACK Back out

Page 4 of 4

	Introduction
	Messages
	Queue Manager (MQM)
	Message Queues
	Manipulating Queue manager Objects
	How MQSeries Works
	Communication between Queue managers

