IBM WebSphere MO (MO Series) in a Nutshell

(Prepared by Channu Kambalyal)

Introduction

MQ Series is a Middleware for Commercial Messaging and Queuing

MQ Series API — also called Message Queue Interface (MQI) used to communicate with
a Message Queue Manager (MQM), the runtime program of MQSeries.

MQI consists of 13 calls.

Messages

Consists of 2 parts: Message Descriptor and Message Data

Message descriptor identifies message id and contains control information such as
message type, expiry time, correlation ID, priority, reply queue name.

MQ Series Version 5 supports maximum message length of 100 MB

Messages can be segmented or grouped. If permitted queue manager segments a large
message when it does not fit in a queue. Application has the option to receive entire
message in piece or each segment separately. Application can also control the logical
boundaries or buffer size of the segment of a message. Queue Manager ensures that the
order of the segment is maintained.

Several small messages can be grouped to build one larger physical message.

Using a Distribution List, you can send a message to more than one destination.
Distribution List is a file contains a list of queue names and queue managers that own
them. Receiving Queue Manager replicates the messages and puts them into destination
gueues (This function is called late fan-out).

MQ Series knows 4 types of massages: Datagram (unsolicited message), Request (a
message for which response is expected), Reply and Report (an event such as
occurrence of an error or confirmation on arrival or delivery)

MQ Series messages can be persistent and non-persistent.

Message Descriptor contains: Version, Message ID/Correlation ID, Persistent/ Non-
Persistent, Priority, Date &m Time, Lifetime of a message, Return Address, Format,
Sender Application and Type, Report options/ Feedback (COA, COD), Back out counter,
Segmenting/ Grouping Information.

Queue Manager (MQM)

Manages queues and messages for applications

Transfers messages to other Queue Managers via channels using existing network
facilities.

It refers to objects that are defined by the administrator.

Coordinates updates to databases and queues using two-phase commit.

Gets and puts from/to queues are committed together with SQL updates, or backed out if
necessary.

Segments messages, if necessary, and assembles them.

Can group messages and send them as one physical message to their destination,
where they are automatically disassembled.

Can send one message to more than one destination using a user-defined dynamic
destination list.

Allow administrators to create and delete queues, alter properties of existing queues,
control the operation of queue manager.

MQ Series for Windows NT version 5.1 provides GUI to administer.

MQ Series for Windows (different from NT) is a single-user queue manager and is not
intended to function as a queue manager for other MQ Series clients.

Page 1 of 4



Queue Manager Clusters

MQSeries for MVS/ESA and Version 5.1 for distributed platforms, provides clustering
features

Queue Managers that form a cluster can run in the same machine or in different
machines on different platforms.

Two of Queue Managers maintain a repository that contains information about all queue
managers and queues in the cluster (full repository). Other Queue Managers maintain
only a repository of the objects they are interested in (partial repository).

Queue Managers use special cluster channels to exchange information.

Client application may specify a queue manager and direct the message to a specific
gueue in a cluster or it may let a queue manager to determine where the queue is and to
which one to send the message.

Client uses a Transmission Queue on its machine and destination queue is called “Target
Queue”.

Administrator must define the name of the cluster, when a queue is defined.

MQSeries distributes the messages round robin.

Queue Manager Objects

A Queue Manager uses 3 types of objects, namely, Queues, Process Definitions and
Channels.

Queues are used to store messages.

Process Definition object defines an application to a queue manager. It contains a name
of a program (and its path) to be triggered when a message arrives for it.

Channel is a communication link. There are 2 kinds of channels, nhamely, Message
Channels and MQI channels.

Message Channel connects 2 queue managers via Message Channel Agents (MCA).
Message Channel is unidirectional.

MCA is a program (also called mover) that transfers messages from a transmission
gueue to a communication link and from communication link to a target queue.

MQI channel connects MQSeries client to a queue manager and is bi-directional.

Message Channel can run at 2 speeds: fast and normal. Fast Channels improve
performance but messages can be lost in case of channel failure.

Message Queues

Message Queues belong to Queue Manager.
Types of Messages Queues are:
0 Local Queue —is a real queue!
0 Cluster Queue —is a local queue that is known throughout a cluster of queue

managers.

0 Remote Queue — structure describing a queue hosted by a different queue
manager.

0 Transmission Queue — a local queue used for messages to be sent to a remote
queue.

Initiation Queue — local queue with a special purpose
Dynamic Queue — local queue created on the fly
Alias Queue - - if you do not like the queue name
Dead-Letter Queue — one for each queue manager
Reply-to Queue — specified in request message
Model Queue — model for local queues

Repository Queue — hold cluster information

Create a queue manager using the command: crtmgm. Example:
0 Crtmgm /q /u system.dead.letter._.queue MYQMGR
To start a queue manager issue command: strmgm

Oo0OO0OO0O0OO0O0

Page 2 of 4



Manipulating Queue manager Objects
e Use the utility RUNMQSC to manipulate queue manager objects. Ensure queue manager

is started prior using the runmgqsc utility. Example:

» C:\strmgm

How MQSeries

» runmgsc

= define glocal('QUEUELY’) replace descry (‘test queue’)
= alter gmgr deadq(system.dead.letter.queue)
= end

Works

Following diagram depicts how MQSeries works:

Figure: How MQSeries Works

MQPUT

Monitors

Remote Q

Channel Initiator
(Must be running)

Starts

ch Init Q

Agent

MQSeries Channel

(MCA)

Moves

Xmit Q

MQM A - Detect message destined for
remote Q moves it to xmit Q and a Ch init Q

Communication between Queue managers

How to Trigger

Message Queu

Applications

ing Interface

L Network

Listener
(Must be running)
(Default port 1414)

Starts

MQSeries Channel
Agent
(MCA)

Moves

MQGET

Trigger Monitor
(Must be running)

Monitors

System
Init Q

Local Q

MCA - Moves messages to a local Q and to
System Init Q

MQCONN Connect to a Queue Manager
MQDISC Disconnect from a Queue Manager
MQOPEN Open a specific queue

MQCLOSE Close a queue

MQPUT Put message on a queue

MQPUT1 Get message from a queue
MQGET MQOPEN + MQPUT + MQCLOSE
MQINQ Inquire properties of an object

Page 3 of 4



MQSET

Set properties of an object

MQCONNX Standard or fast path bindings

MQBEGIN Begin a unit of work (database coordination)
MQCMIT Commit a unit of work

MQBACK Back out

Page 4 of 4



	Introduction
	Messages
	Queue Manager (MQM)
	Message Queues
	Manipulating Queue manager Objects
	How MQSeries Works
	Communication between Queue managers


