
Brief Note on Design Pattern

- By -
Channu Kambalyal

channuk@yahoo.com

This note is based on the well-known book “Design Patterns – Elements of Reusable Object-Oriented Software”
by Erich Gamma et., al.,. The note presented here is the summarized versions of definitions and simplified UML
representations of the patterns. These may be used to quickly re-collect the design patterns and adopt them
during the design of OO applications. For detailed explanations and applicability of the design patterns original
book should be referred. In course of time, more practical examples will be added to this note.

Creational Patterns

1. Abstract Factory – Provide an interface for creating families of related or dependent objects without

specifying their concrete classes (Kit)

AbstactFactory

createProductA()
createProductB()

2. Builder – Separate the construction of a complex object from its representation so that the same
construction process can create different representations.

Director

construct()

for all objects in structure {

builder->BuildPart()

}

ContreteBuilder

buildPart()
getResult()

Builder
1

aClinet aDirec tor :
Direc tor

aConc re teB uild er :
ContreteB ui lder

2: new Direc tor(aConc reteB uilder)

1: new Con c reteB uil der

3: cons truc t()
4: buildP art()

5: getResult()

3. Factory Method – Define an interface for creating an object, but let subclasses decide which class to

instantiate. Factory Method lets a class defer instantiation to subclasses. (Virtual Constructor)

Page 1 of 8

Creator

factoryMethod()

ConcreteCreator

factoryMethod()

Product

ConreteProduct

...
product = factoryMethod()
...

...
product = factoryMethod()
...

...
product = factoryMethod()
...

return new ConcreteProduct

4. Prototype – Specify the kinds of objects to create using a prototypical instance, and create new objects by

copying this prototype.

Client

operation()

ConcretePrototype1

clone()

Prototype

c lone()

p = prototype->clone()

5. Singleton – Ensure a class has only on instance, and provide a global point of access to it.

Singleton
static uniqueInstance
singletonData

static Instance()
return uniqueInstance

Structural Patterns

6. Adapter – Convert the interface of a class into another interface clients expect. Adapter lets classes work

together that couldn’t otherwise because of incompatible interfaces. (Wrapper)

Class adapter:

Adapter

request()

Adaptee

specificRequest()

implements

Client Target

request()

specificRequest()

Object Adapter:

Client

specificRequest()

Client Target

request()

Adapter

request()

Adaptee

specificRequest()

adaptee

Page 2 of 8

7. Bridge - Decouple an abstraction from its implementation so that the two can vary independently. (Handle)

Implementor

operationImpl()

ConreteImplemementorA

operationImpl()

8. Composite - Compose objects into tree structures to represent part-whole hierarchies. Composite lets
clients treat individual objects and composition of objects uniformly.

Panel

Button Label TextField Panel

Button Label TextField

Other examples: A directory structure that contains file types and other directories; A role tree that has a
role and a role tree, and so on.

9. Decorator – Attach additional responsibilities to an object dynamically. Decorator provides a flexibility to

sub classing for extending functionality. (Wrapper).

AComponent

operation()

ADecorator

operation()

AConcreteDecorator

opearation()

10. Façade – Provide a unified interface to a set of interfaces in a subsystem. Façade defines a higher-level
interface that makes the subsystem easier to use.

Page 3 of 8

AClient

SomeClassA SomeClassC

AFacade

getaValue()

uses

SomeClassB

uses uses uses

11. Flyweight – Use sharing to support large numbers of fine-grained objects efficiently.

FlyweightFactory

getFlyweight()

if(flyweight(key) exists) {
 return existing flyweight;
}
else {
 create new flyweight;
 add it to the pool of flyweights;
 return the new flyweight;
}

AClient

12. Proxy – Provide a surrogate or placeholder for another object to control access to it. (Surrogate)

Client
Proxy

request()

RealSubject

request()

realSubject->request()

Behavioral Patterns

13. Chain of Responsibility - Avoid coupling the sender of a request to its receiver by giving more than one

object a chance to handle request. Chain the receiving objects and pass the requests along the chain until
an object handles it.

Client Handler

aConcreteHandler1
ConcreteHandler2

handleRequest()

ConcreteHandler1
aConcreteHandle2

14. Command – Encapsulate a request as an object, thereby letting you parameterize clients with different
requests, queue or log requests, and support undoable operations. (Action, Transaction)

Command de-couples the object that invokes the operation from the one that knows how to perform it.

Page 4 of 8

Client Invoker
Command

execute()

receiver->action()

ConreteCommand

execute()

Receiver

 : Client : Receiver :
ConreteCommand

 : Invoker

1: new Receiver

2: new ConcreteCommand(aReceiver)

3: storeCommand(aCommand)

4: execute()

5: action()

15. Interpreter - Given a language, define a representation for its grammar along with an interpreter that uses
the representation to interpret sentences in the language.

Useful in designing language related applications and compilers.

16. Iterator - Provide a way to access the elements of an aggregate object sequentially without exposing its
underlying representation. (Cursor)

Aggregate Iterator
(from util)

ConcreteIteratorConcreteAggregate

createInterator()

return new ConcreteIterator(this)

17. Mediator – Define an object that encapsulates how a set of objects interacts. Mediator promotes loose

coupling by keeping objects from referring to each other explicitly, and it lets you vary their interaction
independently.

Page 5 of 8

aClient DialogBoxMediator ListBox EntryFie ld

1: showDialog()

3: getSelection()

2: widgetChanged()

4: setText()

18. Memento – Without violating encapsulation, capture and externalize an object’s internal state so that the
object can be restored to this state later. (Token) Example – supporting undo operations.

A memento is an object that stores a snapshot of the internal state of another object.

Originator
state

setMemento(Momento m)
createMemento()

CaretakerMemento
state

setState()
getState()

state = m->getState()

return new Memento(state)

aCaretaker :
Caretaker

 : Originator : Memento

1: createMemento()

4: setMemento()

2: new Memento()

3: setState()

5: getState()

19. Observer – Define a one-to-many dependency between objects so that when one-object changes state, all

its dependents are notified and updated automatically. (Dependents, Publish-Subscribe)

Page 6 of 8

aConcreteSubject aConcereteObserver

1: attachObserver()

3: setState()

2: update()

4: getState()

20. State – Allow an object to alter its behavior when its internal state changes. The object will appear to

change its classes.

TCPEstablished TCPListen TCPClosed

TCPConnection

open()
close()
acknowledge()

TCPState

open()
close()
acknowledge()

state

state->open()

21. Strategy – Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy
lets algorithm vary independently from clients that use it. (Policy)

SomeContext
SomeStrategy

algorithmInterface()

ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC

strategy

22. Template Method – Define the skeleton of an algorithm in an operation, deferring some steps to
subclasses. Template method lets subclasses redefine certain steps of an algorithm without changing the
algorithm. This pattern is so fundamental that it is found in almost every abstract class.

Page 7 of 8

AbstactClass

operation()

ConcreteClass

operation()

23. Visitor – Represent an operation to be performed on the elements of an object structure. Visitor lets you

define a new operation without changing the classes of the elements on which it operates.

Visitor

vis itConcreteElementA(concreteElementA)
vis itConcreteElementB(concreteElementB)

ConcreteVisitor1

ConcreteElementA

accept(Visitor v) v->visitConcreteElemenetA(this)

Client

operation()

ElementA

accept(Visitor v)

 : Client :
ConcreteElementA

 :
ConcreteVisitor1

2: accept(Visitor)

1: new ConcreteVisitor()

3: visitConcreteElementA(concreteElementA)

Note: Simple and more real life examples will be added in course of time for the above design patterns.

Page 8 of 8

